skip to main content


Search for: All records

Creators/Authors contains: "Keller, Lisa M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The influence of mineralogy on the assembly of microbial communities in glacial environments has been difficult to assess due to complications in isolating mineralogy from other variables. Here we assess the abundance and composition of microbial communities that colonized defined minerals incubated for 12 months in two meltwater streams (N and S) emanating from Kaldalónsjökull (Kal), a basalt-hosted glacier in Iceland. The two streams shared similar meltwater geochemistry as well as bedrock and proglacial sediment elemental compositions. Yet genomic DNA and PCR-amplifiable 16S rRNA genes were detected only in Kal S. The amount of recoverable DNA was highest for hematite incubated in Kal S and the composition of 16S rRNA genes recovered from Kal S sediments was most like those recovered from hematite and magnetite, an effect driven largely by similarities in the relative abundance of the putative hydrogenotrophic iron reducer Rhodoferax. We suggest this is attributable to comminution and weathering reactions involving exposed iron silicate minerals that generate and release hydrogen and Fe(III) that can be coupled to support microbial metabolism in Kaldalónsjökull, and possibly other basaltic habitats. The low abundance of cells in Kal N could be due to low availability of Fe(III) or another substrate.

     
    more » « less
  2. Abstract Trace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota ), Wolframiiraptor gerlachensis , and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae . Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles. 
    more » « less
  3. Semrau, Jeremy D. (Ed.)
    ABSTRACT Little is known of how the confluence of subsurface and surface processes influences the assembly and habitability of hydrothermal ecosystems. To address this knowledge gap, the geochemical and microbial composition of a high-temperature, circumneutral hot spring in Yellowstone National Park was examined to identify the sources of solutes and their effect on the ecology of microbial inhabitants. Metagenomic analysis showed that populations comprising planktonic and sediment communities are archaeal dominated, are dependent on chemical energy (chemosynthetic), share little overlap in their taxonomic composition, and are differentiated by their inferred use of/tolerance to oxygen and mode of carbon metabolism. The planktonic community is dominated by putative aerobic/aerotolerant autotrophs, while the taxonomic composition of the sediment community is more evenly distributed and comprised of anaerobic heterotrophs. These observations are interpreted to reflect sourcing of the spring by anoxic, organic carbon-limited subsurface hydrothermal fluids and ingassing of atmospheric oxygen that selects for aerobic/aerotolerant organisms that have autotrophic capabilities in the water column. Autotrophy and consumption of oxygen by the planktonic community may influence the assembly of the anaerobic and heterotrophic sediment community. Support for this inference comes from higher estimated rates of genome replication in planktonic populations than sediment populations, indicating faster growth in planktonic populations. Collectively, these observations provide new insight into how mixing of subsurface waters and atmospheric oxygen create dichotomy in the ecology of hot spring communities and suggest that planktonic and sediment communities may have been less differentiated taxonomically and functionally prior to the rise of oxygen at ∼2.4 billion years ago (Gya). IMPORTANCE Understanding the source and availability of energy capable of supporting life in hydrothermal environments is central to predicting the ecology of microbial life on early Earth when volcanic activity was more widespread. Little is known of the substrates supporting microbial life in circumneutral to alkaline springs, despite their relevance to early Earth habitats. Using metagenomic and informatics approaches, water column and sediment habitats in a representative circumneutral hot spring in Yellowstone were shown to be dichotomous, with the former largely hosting aerobic/aerotolerant autotrophs and the latter primarily hosting anaerobic heterotrophs. This dichotomy is attributed to influx of atmospheric oxygen into anoxic deep hydrothermal spring waters. These results indicate that the ecology of microorganisms in circumneutral alkaline springs sourced by deep hydrothermal fluids was different prior to the rise of atmospheric oxygen ∼2.4 Gya, with planktonic and sediment communities likely to be less differentiated than contemporary circumneutral hot springs. 
    more » « less
  4. Abstract

    The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass.Caldicellulosiruptor bescii(Topt78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase fromClostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates thatC. besciican be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2, without net production of its native fermentation products, acetate and lactate.

     
    more » « less